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ABSTRACT: New strategies are needed to circumvent
increasing outbreaks of resistant strains of pathogens and to
expand the dwindling supply of effective antimicrobials. A
common impediment to drug development is the lack of an
easy approach to determine the in vivo mechanism of action
and efficacy of novel drug leads. Toward this end, we describe
an unbiased approach to predict in vivo mechanisms of action
from NMR metabolomics data. Mycobacterium smegmatis, a
non-pathogenic model organism for Mycobacterium tuberculosis,
was treated with 12 known drugs and 3 chemical leads
identified from a cell-based assay. NMR analysis of drug-
induced changes to the M. smegmatis metabolome resulted in
distinct clustering patterns correlating with in vivo drug activity.
The clustering of novel chemical leads relative to known drugs provides a mean to identify a protein target or predict in vivo
activity.

Emerging and remerging infectious disease outbreaks from
numerous Gram-negative and Gram-positive pathogens

have increased dramatically over the past decade.1 Further, we
are facing the serious likelihood that these pathogens will soon
become resistant to all known antibacterial treatments, which
may lead to worldwide pandemics.2 Unfortunately, the
development and approval of antibiotics have not kept pace
with the growing emergence of resistant pathogens.3 Instead,
there has been a decline in the approval of new antibiotics.4

Twenty novel classes of marketable antibiotics were produced
between 1930 and 1962.5 These classes of antibiotics inhibit a
short list of cellular processes: cell wall biosynthesis, DNA
supercoiling, transcription, translation, and folate biosynthesis.
Since 1962, only two new antibiotic classes have received FDA
approval: oxazolidinones, which inhibits protein synthesis, and
cyclic lipopeptides, which destroys membrane potential. Both
compounds are used in the treatment of Gram-positive bacteria,
such as methicillin-resistant Staphylococcus aureus (MRSA).5

However, additional antibiotics are needed to combat the
prevalence of other multidrug-resistant pathogens, such as
Enterococcus faecium, Klebsiella pneumonia, Acinetobacter bau-
manii, Pseudomonas aeruginosa, and Enterobacter species that are
infecting the majority of U.S. hospitals.6 Also extreme drug-
resistant strains of Mycobacterium tuberculosis are a rising threat
in the world.
The Infectious Diseases Society (IDSA) has proposed an

initiative to develop and approve 10 novel antibiotics by the
year 2020.7 However, existing drug discovery strategies may not

be able to meet these challenges. Drug discovery programs rely
heavily on target-based high-throughput screening (HTS) of
large chemical libraries followed by lead optimization.8,9

Unfortunately, this approach has demonstrated an extremely
high rate of failure and erroneous leads. Even when a valid HTS
hit is found, it is uncertain if this chemical lead can penetrate
into the bacterial cell and demonstrate in vivo activity.
NMR Metabolomics is evolving as a significant component

of the drug discovery process and offers an inexpensive route to
help overcome the multiple challenges faced by researchers.10

Metabolomics is a relatively new field and is based on the
identification and quantification of small molecules found in
living cells or biofluids.11 Since small molecules are downstream
products of biomolecular processes, the identity and concen-
tration of metabolites provide biochemical signatures for
tracking the physiological effects of antibiotic efficacy,
selectivity, and toxicity. Characterizing these biochemical
signatures relies upon the global determination of numerous
endogenous small molecules followed by pattern recognition
using multivariate analysis.12 Such comprehensive biochemical
information can be readily obtained using 1H NMR spectros-
copy with minimal sample handling while providing highly
reproducible data in an automated fashion.10 Multivariate
statistical analysis, such as orthogonal partial least-squares
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discriminant analysis (OPLS-DA), is typically employed to
extract information from the large and complex NMR data
sets.13 Simply, OPLS-DA is used to identify clustering patterns
from the major variations between NMR spectra.10

Herein, we describe a new method using 1H NMR and
OPLS-DA to profile the in vivo mechanism of action of known
antibiotics used to treat M. tuberculosis. More importantly, we
aim to use this information to classify compounds with
unknown mechanisms of action, but demonstrated antituber-
cular activity. Our approach is predicated on the hypothesis that
drugs with similar modes of activity or therapeutic targets will
have a similar impact on the metabolome of M. smegmatis and
will cluster together in an OPLS-DA scores plot. Thus, the
mode of action of a novel chemical lead can be inferred from its
clustering in an OPLS-DA scores plot relative to drugs with
defined biological targets. Importantly, if the chemical lead is
separated from known drugs in the OPLS-DA scores plot, then
this result would infer a new mechanism of action and a
potentially valuable, new antibiotic.
Our methodology was demonstrated using 12 antibiotics

known to inhibit the growth of M. tuberculosis and M. smegmatis
(Table 1). The mechanism of action for each antibiotic was
identified from the Drug Bank Database,14 and the minimum
inhibitory concentrations (MICs) were obtained from the
scientific literature.15−23 In addition, three chemical leads were
randomly selected from the Tuberculosis Antimicrobial
Acquisition and Coordinating Facility (TAACF) library of
compounds (http://www.TAACF.org). The compounds were
screened against M. tuberculosis and have MICs comparable to
those of known TB drugs, but the biological target or
mechanism of action was not reported by TAACF. The non-
pathogenic M. smegmatis was used as a model system for the
NMR metabolomics study.
In order to analyze changes in the M. smegmatis metabolome,

the drug dosage needs to be below lethal levels and affect only
cell growth. Typically, a drug concentration that inhibits cell
growth by approximately 50% of the growth rate of untreated

cells is desirable. While MIC values are available from the
literature, these concentrations are based on standardized drug
gradients, inoculum sizes, and readout end points. Additionally,
the reported MICs were obtained with different bacterial
strains, at different growth stages or cell densities, and under a
variety of experimental conditions that includes either broth or
agar methods. Further complicating the situation is the diversity
of MICs values reported for a single drug. Thus, the literature
MIC values listed in Table 1 were simply used as a starting
point to determine an optimal dosage for the NMR
metabolomics study under our experimental conditions. Each
drug was titrated over a concentration range of 1 to 24 times
the literature MIC values. The individual drug concentrations
needed to achieve ∼50% growth inhibition are reported in
Table 1. An average growth inhibition of 43.1 ± 10.5% was
observed after the addition of each of the 15 drugs. Preparation
of the M. smegmatis cell cultures for metabolomic analysis was
then performed using the optimal dosage for each drug.
Due to the inherit variability of biological samples and to

provide a robust statistical analysis, 10 cultures inoculated with
each antibiotic and 40 cultures of untreated cells were prepared
for the NMR metabolomics study. A 1D 1H NMR spectrum
was collected for each biological sample, which were
normalized using center averaging and analyzed using OPLS-
DA. A representative 2D OPLS-DA scores plot displaying a
comparison between 6 antibiotics with known mechanisms of
action is shown in Figure 1. The OPLS-DA model was cross-
validated using a modified leave-one-out method. A quality
assessment score (Q2) of 0.82 was obtained, which is an
excellent result compared to an ideal score of 1. Thus, the
cross-validation indicates a highly reliable model. Each point in
the 2D OPLS-DA scores plot represents a single 1D 1H NMR
spectrum of a specific drug-treated or untreated cell culture.
The 2D OPLS-DA scores plot consists of 4 separate clustering
patterns, which demonstrates that each group has a
considerably different impact on the metabolome of M.
smegmatis. Importantly, all of the drug-treated M. smegmatis

Table 1. Description of Antimicrobial Compounds and Dosages Used in This Study

compound class mechanism of action MICa (μg/mL) dosageb (μg/mL)

ampicillin penicillins inhibits transpeptidation and prevents cell wall formation 16.0c 96.0
chloramphenicol amphetamines inhibits protein synthesis by binding to the 50S ribosomal subunit 6.0 6.0
ciprofloxacin fluoroquinolones inhibits DNA gyrase and prevents DNA supercoiling 0.2 2.0
D-cycloserine oxazolidinones inhibits alanine racemase and alanine ligase and prevents cell wall formation

(different from other oxazolidinones that inhibit protein synthesis)
750 750

ethambutol amino alcohols disrupts arabinogalactan formation by inhibiting arabinosyl transferase 10.0 100.0
ethionamide pyridine

derivatives
inhibits mycolic acid formation similar to isoniazid 20.0 160.0

gentamicin aminoglycosides inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S
rRNA

2.0 8.0

isoniazid pyridine
derivatives

a prodrug that inhibits InhA and prevent mycolic acid synthesis 2.0 48.0

kanamycin aminoglycosides inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S
rRNA

4.0 4.0

rifampicin rifampicins inhibits RNA polymerase and prevent RNA synthesis 30.0 60.0
streptomycin aminoglycosides inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S

rRNA
0.25 1.5

vancomycin glycopeptides binds to the D-alanyl-D-alanine dipeptide and prevents cell wall formation 50 450
amiodarone benzofurans unknown 26.6 212.8
clofazimine anilines unknown 0.32 3.84
chlorprothixene thioxanthines unknown 36.0 216.0

aLiterature values of minimum inhibitory concentrations against M. smegmatis used as a starting point to determine an optimal dosage for the NMR
metabolomics study. bActual dosage used to treat M. smegmatis cells to inhibit growth by ∼50% following drug treatment. cReported for M.
smegmatis β-lactamase and ribosomal protein S12 mutants.
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cell cultures form distinct and separate clusters from the
untreated cell cultures. This is consistent with all of the drugs
being biologically active and inhibiting M. smegmatis cell
growth. Antibiotics that share a similar or identical biological
target were observed to cluster together in the OPLS-DA scores
plot. For example, ethambutol and isoniazid inhibit mycolic
acid biosynthesis that prevents the formation of the
arabinogalactan-mycolic acid matrix. Streptomycin and cipro-
floxacin form the second cluster. Streptomycin prevents protein

synthesis, and ciprofloxacin inhibits DNA supercoiling that
affects replication, transcription, and repair, leading to a similar
disruption in protein synthesis. Since these two antibiotics
cluster together, it implies that the inhibition of transcription or
translation results in a similar impact on the metabolome.
Vancomycin and D-cycloserine both affect cell wall formation
and form the third cluster. In a principal component analysis
(PCA) of the data (see Supplemental Figure 1S) there is a
more pronounced separation between vancomycin and D-
cycloserine along PC2. This reflects a fundamental difference
between PCA and OPLS-DA, where PCA is limited to a linear
model and does not readily differentiate between within-class
and between-class variations.13,24 Correspondingly, OPLS-DA
is preferred as long as cross-validation verifies a reliable model.
The NMR metabolomics analysis was then expanded to

include a total of 12 drugs with known biological targets and 3
compounds randomly chosen from the TAACF library.
Amiodorone, clofazamine, and chlorprothixene are active
against TB but have unknown mechanisms of action according
to the TAACF database. Nevertheless, the three compounds
are known drugs, where amiodorone is an antiarrhythmic agent
that affects potassium efflux, chlorprothixene is an antipsychotic
drug that inhibits dopamine receptors, and clofazamine is a 40-
year-old leprosy treatment with an ill-defined biological activity.
The 2D OPLS-DA scores plot (Figure 2A) identified 4 distinct
clusters and yielded a highly reliable cross validation Q2 score of
0.671. As before, the different clusters are correlated with
distinct modes of action: inhibition of cell wall formation,
inhibition of mycolic acid biosynthesis, and inhibition of
transcription, translation or the overall effects of DNA
supercoiling.

Figure 1. 2D OPLS-DA scores plot demonstrating the clustering
pattern obtained for six different antibiotics with known and distinct
biological targets: untreated M. smegmatis cells, ciprofloxacin,
streptomycin, ethambutol, isoniazid, D-cycloserine, and vancomycin
treated M. smegmatis cells. Symbols and labels are indicated on the
plot. The ellipses correspond to the 95% confidence limits from a
normal distribution for each cluster. The untreated M. smegmatis cells
was designated the control class, and the remainder of the cells were
designated as treated. The OPLS-DA used one predictive component
and three orthogonal components to yield a R2X of 0.610, R2Y of
0.893, and Q2 of 0.82.

Figure 2. (a) 2D OPLS-DA scores plot demonstrating the clustering pattern for 12 antibiotics with known biological targets and three compounds of
unknown in vivo activity: untreated M. smegmatis cells, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, rifampicin, streptomycin, ethambutol,
ethionamide, isoniazid, ampicillin, D-cycloserine, vancomycin, amiodorone, chlorprothixene, and clofazimine treated M. smegmatis cells. The symbols
correspond with the coloring scheme and labeled symbols indicated on the tree diagram in (b). The ellipses correspond to the 95% confidence limits
from a normal distribution for each cluster. The untreated M. smegmatis cells (black square) was designated the control class, and the remainder of
the cells were designated as treated. The OPLS-DA used one predictive component and six orthogonal components to yield a R2X of 0.715, R2Y of
0.803, and Q2 of 0.671. (b) Metabolomics tree diagram determined from the OPLS-DA scores plot. The coloring scheme and associated symbol for
each compound in the tree diagram correlates with colored symbols in the OPLS-DA scores plot. The bootstrap numbers for each node are indicated
on the tree diagram.
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The accompanying metabolomics tree diagram25 (Figure 2B)
clearly visualizes the relative groupings of the three antibiotic
classes. The bootstrap numbers of 89−100 indicate a
statistically significant separation between the five clusters and
the reliability of the general drug and TAACF classifications.
The metabolic tree diagram also provides a finer separation
between the drugs within each cluster. These separations may
reflect actual differences in the specific drug targets. For
example, D-cycloserine and vancomycin are on separate
branches in the cell wall node potentially because D-cycloserine
inhibits alanine racemase and alanine ligase compared to
vancomycin binding the D-alanyl-D-alanine dipeptide. Alter-
natively, the separation may result from differences in the
relative activity of the drug. Streptomycin forms a separate
branch in the transcription, translation, or DNA supercoiling
drug cluster despite having a similar target (binding to the 30S
ribosomal protein S12 and 16S rRNA) relative to other
members within the cluster. However, streptomycin is one of
the most active compounds tested, requiring a dosage of only
1.5 μg/mL to inhibit M. smegmatis growth by approximately
50%. Also, overinterpreting these subtle separations may be
erroneous since the within-cluster differences may simply
reflect experimental variability and may not be biologically
relevant. For instance, an average growth inhibition of 43.1 ±
10.5% was observed after the addition of each of the 15 drugs.
This dosage variability may lead to unintended separations in
the 2D OPLS-DA scores plot. Essentially, the reliability of these
finer cluster differences is dependent on additional supportive
biological data.
Surprisingly, amiodorone, chlorprothixene, and clofazamine

were found to cluster together in the 2D OPLS-DA scores plot
and metabolic tree diagram. This was an unexpected result
given that the three compounds were randomly selected from
the large TAACF library and have diverse therapeutic usages.
However, it also implies the three compounds share a similar
mechanism of action in TB. Importantly, the three TAACF
compounds also cluster with the antibiotics that disrupt cell
wall formation, ampicillin, D-cycloserine, and vancomycin. This
infers a similar mode of action between the three TAACF
compounds and the antibiotics that are known to interfere with
bacterial cell walls. A subsequent literature search indicated that
the three TAACF compounds have been previously shown to
disrupt bacterial membranes in organisms distinct from
TB.26−30 Thus, the literature results are consistent with our
NMR metabolomics analysis, which support our general
classification of the TAACF compounds as interfering with
bacterial cell walls. It is important to note that while ampicillin
is a member of this class of antibiotics, it is also skewed toward
the untreated cells in the 2D OPLS-DA scores plot.
Presumably, this is because of M. smegmatis β-lactamase activity
that provides resistance to ampicillin.23,31 The impact of
ampicillin on the metabolome of M. smegmatis is significantly
diminished such that ampicillin M. smegmatis is similar to
untreated cells. As described previously, there are some
differences between the OPLS-DA and PCA scores plot (see
Supplemental Figure 2S). There is less discrimination between
the untreated and drug-treated cells in the 2D PCA scores plot.
This is not unexpected since PLS is preferred over PCA for
discrimination been classes.24 Also, there is a separation
between the three TAACF compounds and the cell wall
antibiotics in the PCA scores plot, but the TAACF compounds
are still closer to the cell wall antibiotics in the associated
metabolic tree diagram (see Supplemental Figure 2S). In fact,

the OPLS-DA and PCA metabolomic tree diagrams are quite
similar despite these visible differences in the scores plots.
Additionally, the quality of the OPLS-DA model is apparent
from the fit to the data, R2X > 0.610 and R2Y > 0.803, and the
reliability of the model is apparent from the cross-validation Q2

scores >0.617. Further validation of the OPLS-DA drug and
TAACF classifications comes from the analysis of the
metabolites identified as the major contributors to the OPLS-
DA class separation (see Supplemental Figures 3S−6S).
The S-plots and loading plots determined from the OPLS-

DA models identify the chemical shifts (and associated
metabolites) that contribute to the observed separation
between the untreated and treated cells in the 2D OPLS-DA
scores plot. The metabolites and corresponding pathways
predominately perturbed by the addition of each drug class are
listed in Supplemental Tables 1S−3S. While there are some
broad similarities in the metabolites and pathways affected by
the drugs because the comparisons are all made relative to
untreated cells, there are also some distinct differences. For
example, proline, cytidine, uridine, and inosine (pyrimidine and
purine pathways) are all uniquely decreased by drugs that affect
transcription, translation, or DNA supercoiling. Obviously,
nucleotides are essential metabolic precursors to DNA and
RNA synthesis. Alternatively, choline phosphate, lysine,
spermidine, citruline, ascorbate, and dehydroascorbate (glycer-
ophospholipid, lysine biosynthesis, arginine and proline
metabolism, and ascorbate metabolism pathways) are decreased
by drugs affecting the mycolic acid pathway. Ascorbate
metabolism is directly linked to the mycolic acid pathway,
where ascorbate leads to arabinose. Arabinose is the primary
precursor for the arabinogalactan-mycolic acid complex. Also,
the inhibition of spermidine synthesis has been previously
observed for drugs targeting the mycolic acid pathway in
mycobacteria.32 Importantly, the set of metabolites affected by
the TAACF compounds were identical to metabolites
perturbed by D-cycloserine and vancomycin. Both show a
decrease in oxaloacetate, glutamine, glutamate, methionine, and
folate and an increase in isoleucine. Clearly, amino acids and
their precursors are important components in peptidoglycan,
cell wall, and cell membrane synthesis. There were some
additional metabolites that are increased by the addition of D-
cycloserine and vancomycin that were not observed with the
TAACF compounds. These include other amino acids (alanine,
lysine serine, valine) and other precursors to peptidoglycan
synthesis (N-acetyl-D-glucosamine, N-acetylneuraminate).
Overall, the identity of the specific metabolites perturbed by
each drug class is consistent with the 2D OPLS-DA scores plot
clustering pattern and drug classifications.
In conclusion, we have demonstrated that different classes of

antibiotics uniquely affect the metabolome of M. smegmatis.
These metabolomic changes are directly correlated with broad
mechanisms of action that are associated with each TB class of
antibiotics, disruption of cell walls or membranes, inhibition of
transcription, translation, or DNA supercoiling, or the
inhibition of mycolic acid biosynthesis. Thus, NMR metab-
olomics provides an efficient, simple, and unbiased approach
for providing rapid classification of promising drug leads that
emerge from HTS. This is critical since HTS does not provide
any information on mechanisms of action, only relative activity
with a high-false positive rate. Instead, the in vivo biological
activity of a novel lead can be inferred by its relative clustering
to existing drug classes in an OPLS-DA scores plot derived
from metabolomics data. Importantly, a chemical lead that
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forms a distinct cluster from known drugs infers a potential new
mechanism of action and a reason to prioritize the chemical
lead for a detailed follow-up investigation. Of course, the
induced metabolomic changes relative to untreated cells
provide further confirmation of in vivo efficacy, which was
implied from the HTS results. While the technique was
demonstrated with M. smegmatis, it is generally applicable to
bacterial pathogens and the effect of therapeutic agents on
human cell lines in addition to the analysis of biofluids.

■ METHODS
Determining Optimal Drug Dosage for NMR Metabolomics

Experiments. M. smegmatis mc2155 cells were grown at 37 °C with
shaking at 200 rpm in 50 mL of Middlebrook 7H9 media until an
average optical density at 600 nm (OD600) of 0.6 was achieved. Each
drug was titrated over a concentration range of 1 to 24 times the
literature MIC values and the cells were grown for an additional 2 h.
The optical density was recorded, and the growth rate inhibition was
calculated by comparing the optical density of the treated cells to the
untreated cells in the 2 h time period. The desired drug dosage was
determined where a drug concentration inhibits cell growth by
approximately 50% of the growth rate of untreated cells.
Sample Preparation. A total of 190 M. smegmatis mc2155

cultures were grown in 50 mL of Middlebrook 7H9 at 37 °C with
shaking at 200 rpm until an OD600 of 0.6 was achieved. A total of 40
untreated cultures were used as a control, and 10 cultures were
inoculated with each antibiotic at the optimal dosage needed to inhibit
cell growth by ∼50% as described in Table 1. The cells were then
grown for an additional 2 h. The used media was removed, and the
cells were washed 3 times and resuspended with 1 mL of ice-cold
double distilled water. The cells were lysed using a FastPrep-24
instrument for 60 s at 6 m/s, and the supernatant was extracted and
frozen in a dry ice/ethanol bath. The samples were lyophilized and
then resuspended with 700 μL of 99.8% D2O solution containing 50
mM phosphate buffer (pH 7.2, uncorrected) and 50 μM 3-
(trimethylsilyl)propionic acid-2,2,3,3-d4 (TMSP-d4) as an internal
standard for chemical shift referencing. The samples were then
centrifuged for 5 min to remove any insoluble material, and 600 μL of
the supernatant was transferred to an NMR tube.
NMR Data Collection and Processing. The NMR spectra were

collected on a Bruker 500 MHz Avance spectrometer equipped with a
triple resonance and z axis gradient cryoprobe. A BACS-120 sample
changer was used for automated data collection. 1D 1H NMR spectra
were collected using excitation sculpting to remove the solvent signal
and maintain a flat spectral baseline.33 A total of 32 K data points with
a spectral width of 5482.5 Hz, 16 dummy scans, and 128 scans were
used to obtain each spectrum. The data was processed automatically
using ACD/1D NMR Manager (Advanced Chemistry Development).
Intelligent bucketing was used to integrate each spectral region with a
bin size of 0.025 ppm. Each NMR spectrum was center averaged to
minimize any experimental variations between bacterial cultures as
follows:34

=Z
X Xi

(1)

where X̅ is the average signal intensity, σ is the standard deviation in
the signal intensity, and Xi is the signal intensity within a bin. Noise
regions of the spectra were omitted from the PCA analysis by setting
the corresponding bins to zero.35

OPLS-DA and PCA was performed using Simca-11.5+ (Umetrics),
where each 1H NMR spectra was reduced to a single point in the 2D
OPLS-DA and PCA scores plot. The OPLS-DA was calculated with
two classes, untreated versus drug-treated cell cultures, for the Y matrix
with the NMR data incorporated into the X matrix. The OPLS-DA
model was cross validated using a modified version of the leave-one-
out technique, where 1 out of every 7 samples (spectra) were left out
to calculate a model and predict the left out data.36 The procedure was
sequentially repeated leaving out a different one-seventh of the data.

The predicted data was then compared to the original data, where the
quality assessment (Q2) score provides a qualitative measure of the
predictability of the model based on the consistency between the
predicted and original data. An ideal value for Q2 is 1, where a typical
value for a biological model is ≥0.4.
Metabolomic tree diagrams with corresponding bootstrap values

were created using our PCAtoTree program to interpret the OPLS-DA
clustering pattern.25 The metabolomics tree diagram is based on the
Euclidean distances between the cluster centers from the 2D OPLS-
DA scores plot. Standard bootstrapping techniques are used to
generate a set of 100 distance matrices by randomly resampling the
cluster centers and Euclidean distances. The set of 100 distance
matrices are then used by PHYLIP (http://www.phylip.com),37

phylogenetic software package, to generate 100 tree diagrams and a
consensus tree diagram. The bootstrap numbers on the consensus tree
diagram indicates the number of times each node was present in the
set of 100 tree diagrams, where a bootstrap number below 50%
indicates a generally insignificant node or insignificant separation
between the clusters.
Four additional OPLS-DA models were generated to identify

specific metabolites associated with drug activity: (i) inhibition of
translation, transcription, or DNA supercoiling drug-treated cells versus
untreated cells, (ii) inhibition of mycolic acid synthesis drug-treated
cells versus untreated cells, (iii) inhibition of cell wall synthesis drug-
treated cells versus untreated cells, and (iv) the three TAACF
compounds versus untreated cells. S-plots and loading plots were
generated from each OPLS-DA model. Bins (chemical shift values)
demonstrating a covariance of greater than 0.10 or less than −0.10
were identified as major contributors to the class separation.
Metabolites were identified from this list of chemical shifts using the
Human Metabolome Database (HMDB, http://www.hmdb.ca/)38

with a chemical shift tolerance of 0.02 ppm. Metabolic network maps
were then generated using Cytoscape (http://www.cytoscape.org/)39

with the MetScape40 plugin for the top 100 metabolite predicted by
HMDB. Metabolites were excluded if not part of a network or not
present in M. smegmatis.
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